
I ], 
q,'(z) o,~p --~I~, 

while we obtain the following expression for the normal stress on the segment I-a; a ] between 
the slits 

AT (x)  = 
2p exp2F~ t ~ a,ct~ b,---_--2a2 k-----~7 -- 

The linear dimension of the plastic region is determined by the formula 

a = b [ t  (1 -- v~)~ P~ ] '/~ , 4 1 f f b 2 F  ~ 

where  v i s  t h e  P o i s son  r a t i o ;  E i s  t h e  Young modulus ;  t h e  c o n s t a n t  F s i s  found from ( 1 . 1 5 ) .  
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ALGORITHM FOR STUDYING THE NONLINEAR DEFORMATION AND STABILITY 

OF CIRCULAR CYLINDRICAL SHELLS WITH INITIAL SHAPE FLAWS 

L. P. Zheleznov and V. V. Kabanov UDC 624.074.4:539.1 

Axisymmetric deflections have been examined in most of the well-known solutions of prob- 
lems concerning the stability of shells with initial deflections. Some of the studies have 
examined the effect of nonaxisymmetric deflections. The solutions have been obtained either 
in a classical formulation, without allowance for the moments of the initial stress state, 
or in a formulation which presumed the development of initial deflections, without restruc- 
turing, during nonlinear deformation under axisymmetric loads. 

Below we obtain a fairly general solution to the problem, without restrictions on the 
load or the form of the initial and bifurcative deflections. We use the method of finite 
elements in displacements. The finite elements are chosen in the form of rectangles of na- 
tural curvature having form functions which consider their displacement as rigid bodies. 

We will examine a circular cylindrical shell of the length L, radius R, and thickness 

N M 

h. The initial shape flaws are given either by the series w ~ == ~. ~u,~;cosi~cos/nx:L. or by 
~=I , t  = 1  

a two-dimensional set of nodal values of the initial deflection and its derivatives w ~ = 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
4, pp. 143-148, July-August, 1989. Original article submitted October 6, 1987; revision 
submittted February 16, 1988. 
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{w I, w$1, w~1 ..... w k, W~k, w~ k, .... WVn }. Here, x and ~ are the longitudinal and angular 
coordinates; N and M are the number of terms of the Fourier series in the expansion of the 
initial deflection w~ n is the n~mber of nodes of the theoretical finite-element grid; ~ = 
x/R, wij are the amplitudes of the initial deflection; ~ and ~ in the subscripts denote dif- 
ferentiation. 

The initial deflections are approximated on each finite element by a cubic polynomial 
whose unknown coefficients are expressed through the nodal values of the initial deflection 
and its derivatives. The shell is loaded by an arbitrary system of surface loads qi(x, y), 
linear contour forcesPci(X, y) and moments Mci(X, y), and local forces Ps and moments Ms 
Here, i = i, 2, 3 corresponds to the directions of the axes x, y, and z. 

i. Finite Element of the Shell. Using the solution [i], we write expressions for the 
displacements of the finite element 

u = a , ~ q  + %~ + ~ 3 ~  + % --  ~ 6 s - -  %o< 

v = a ~  + ~6~c + a7~ + % - -  ~o~S + ~3c - -  ~2~s, 

,v = %~3~la +~ /o~a~  ~ + ~n~sq + % ~  + ~ a ~ l  3 + ~ . ~ e r  + 

+ ~22~ ~ + %3s + ~ c  + = ~ ,  ~ = k~x, ~ = k2~, 

c = c o s ~ ,  s = s i n ~ ,  u =k~u ' ,  v = k j ,  w = k ~ w ' ,  k~ = R  - t .  

In matrix form, u =P~ (u = {u, v, w} is the vector of the displacements of points of 
the finite element; P is a 3 x 24 coupling matrix; ~ = {al, ..., a2~ } is the vector of the 
unknown coefficients of the polynomials). 

We adopt the kinematic relations for the finite element in the form 

%i ---- -- zv~k2, X2--=vn--~:2tvml, Za:2(v~--k2rv~rl) 

(the superscript 0 denotes the initial deflection; ~ and q henceforth denote differentiation 
with respect to ~ and q). In matrix form, 

e = ~ z +  eo + e,~ - -  (A l + Ao + A~)u, ( 1 . 1 )  

where e = {el, e2, c3, XI, X2,Xs} is the vector of t h e  strains and the changes in curvature 
of points of the finite element 

A7 = ( ~  
0 

0 
A,] = 0 

A~ = 0 

o ( ) .  

( )~ ( h 
( )  o 

0 
0 

0 
0 

)~ ~ 
-:2-( )n 

0 0 0 

o ( ),~ 2 ( h  
- I~..( )~  - ,% ( )nn - 2/,'2 ( )>~ 

0 0 0 O; 
0 0 0 0 

~0 [w~( )~+ .~ (h ]  o o o 
0 0 0 0 
0 0 0 0 

( h ( ) n  o o o 

Using the solution in [2], we write expressions for the displacements, internal forces, 
and potential energy of the finite element 

u =Plu__ P1 = P B - ~ ,  T = D e  = T  t + T o  + T , ~  ---- 

= Del + D% q- De,~, H i = Wi  - -  A i ,  

1 T BcUc<t _= R~us tV~ 7, .  T~ed,s ", A~ = q~uds - -  , 
S S l 

(1.2) 
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Here, u = {ui, vi, w i, w~i, O i, w~q i, . . . ,  w~qj, . . . ,  w~q c . . . . .  WSqn} is the vector of the 
nodal displacements of the element; B is a 24 • 24 matrix; T {TI, T2, T3, MI, M2, M3} is 
the vector of the internal force and moments; q = {ql, q2, q3} is the vector of the external 

surface load; Rc = {Pcl, Pc2, Pc3, Mcl, Mc2, Mcs} andRE = {Ps Ps Ps Ms Ms Ms are the 
vectors of the contour and local forces and moments; c = {u, v, w, w~, O, w~q}; ~s = {u~, 
vs ws w~s 0s w~qs ~ = -v + wN; the matrix of the elastic constants 

D = 

B~ z 0 
0 Baa 

0 
D11 D,.z 0 
Dr} Dll  0 

0 0 Daa 

B~, : Eh/(l  -- re), 
1 1 1 2  : :  v B I 1  , 

(1 - -  v) B ,  Baa 2 T " 
Di1 :: EBB~12 (t - -  vz), 
Die = vD,1, 

Daa = + (1 -- v) D,  l- 

Summing the potential energies of the individual elements, we find the total potential 
energy of the shell. 

2. Equations of EquilSbrium of the Shell. We obtain the system of nonlinear algebraic 
equations of equilibrium of the shell in accordance with the principle of virtual displace- 
ments 5H = 0. We write the variation of the potential energy of the shell 

8H = ~ (SW~-- 5A 0 = ~ T~Ssds--  8A~ = 0; 
i = 1  i = 1  s'  

6 ,A ,  : .[ 5 + s R > o e ,  - 
s l 

(2.1) 

(2.2) 

Inserting (i.i) into (2.1), we have 

i = l  " s 

\ 

s t 

Representing e n and % in the form 

e ~ = T B e ,  6 e ~ =  BSe, eo = ~o~, 6% = B~ 

where 

- , �9 %). 
P*B lu; P,.i (P:,i)~; P"-J (PaJ)n-- (P.,J) (] 1 , .  

Pij* are elements of the matrix p*; Pij are elements of the matrix P, with allowance for 
(i.i) and (1.2) we write (2.3) as 

E ((K~ -I- K~ -i KI -i- K.,_ i- .')K~ -~-. Ka) u - -  Q - Q c -  Qr = 0. 
i=1 .  

Here, 

s 

K, = (B- l )  T ! '~ P'A_~D*B"P* d.~B-l; Qc := S Rc  Peal/B-l;  
s I 

K , : - ~ - I ( B - 1 )  r ~ y P ' X ~ D * B P * d s B - ; ;  Q t : R s  

(2.3) 

(2.4) 
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K3= (B:')~ / ~ (P*)~ IT] P* dsB-X; IT] = (~~ D*~~ -r- 
8 

:l- (g")" D*B 1- (I/2) g~D*T~ ~ q- (1/2) B~'D*B; 

- I (h  ~ ()" I tL' B'" ~ , A~ := 0 (),1 ()~ ; D*--  B,.., B,;  0 " 
0 () o o o 

(Pc)Ii = P,i; (Pc)2i = P2j; (Pc)ai ~- PsJ; (Pc)4j = (P.~j)~; 
(Pe)~ =--P~J I-(P:v),~; (Pe)6i = (P3i)~n (7 = 1, ..., 24); 

(Pc)ij and Pij are elements of the matrices Pc and P, respectively. Considering the dis- 
placement compatibility conditions in accordance with [2] and the boundary conditions, we 
find the system of algebraic equations of equilibrium of the shell 

q~(u) = I~u -- (~ = 0, ( 2 . 5 )  

where K (the band-type stiffness matrix of the shell) is obtained by summation of the ele- 
ments of the matrix (K~-~ K, ~ K~-~ K, + 2K~-~ K~) with the use of the index matrix [3]; Q (the 
vector of the generalized nodal forces of the shell) is determined by adding the elements 
of the vector (Q+Q c + Q.s with the use of the index matrix; u is the vector of the nodal 
displacements of the shell. 

3. Algorithm for Solving Shell Equilibrium Equations. To solve system (2.5), we will 
use the Newton-Kantorovich method [3] : 

0, (.~) A = - ~ (u~) ( 3 .  l )  
g u  n 

(A i s  t h e  v e c t o r  o f  t h e  i n c r e m e n t s  o f  t h e  n o d a l  d i s p l a c e m e n t s ) .  The d e r i v a t i v e  ~o(un) /0n~ 
i s  t h e  m a t r i x  o f  t h e  second  d e r i v a t i v e s  o f  t h e  p o t e n t i a l  e n e r g y  o f  t h e  s h e l l  and i s  found 
from t h e  second  v a r i a t i o n  o f  p o t e n t i a l  e n e r g y  in  t h e  form 

m?/ 

(3.2) 

Using the relation 6~s = 6~en = 6B6e, T~6~e : 6eTT*6e, where 

w i t h  a l l o w a n c e  f o r  ( 1 . 2 )  and ( 2 . 4 )  we have 

( 3 . 3 )  

Here 

s 

T' (g0)TD*B ~ I- (g~ t- ~D*(g0) + gTD*B- !- T*; 

C - -  D * B  - ~  -]- D * B .  
I n s e r t i n g  ( 3 . 2 )  i n t o  ( 3 . 1 )  and a l l o w i n g  f o r  ( 2 . 5 ) ,  ( 3 . 3 ) ,  t h e  boundary  c o n d i t i o n s ,  and 

c o m p a t i b i l i t y  c o n d i t i o n s  [2 ] ,  we o b t a i n  

= - K(u)  (3.4) 

(H is the band-structured Hessian of the system, which is determined by summation of the 
elements of the matrix l[ = Ku ]-Ka-i K~ [ K~). 

Augmenting (3.2) with the equation 

(.),~+i = ( . )~  z A ( 3 . 5 )  

we seek the solution of the system of nonlinear algebraic equilibrium equations in the fol- 
lowing manner. We assign a small value to the load parameter. As the zeroth approximation 
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we take the solution of the linear problem. We perform the iteration by scheme (3.4)-(3.5), 
in which H is computed once after the first iteration and remains unchanged for the other 
iterations. The load is then increased, and as the zeroth approximation we take the solution 
from the previous load level. The iteration process is performed again. In each iteration, 
the system of linear algebraic equations is solved by the Kraut method using the expansion 

~ L~DL [4]. Having solved system (2.5), we find all of the components of the nonlinear 
initial stress-strain rate. 

4. Stability of the Shell. To evaluate the stability of the initial state of the shell, 
we adopt an energy criterion of stability. In accordance with this criterion, the equilib- 
rium state is stable if 629 > 0 and unstable if ~2H < 0. It follows from this that, in con- 
formity with the Sylvester criterion, a stable state requires that the matrix H be positive- 
definite. This in turn means that all of the minors of Hare positive. A change in the 
sign of a minor is equivalent to a change in the sign of an element of the matrix D in the 
expansion LTDL of the matrix H. The latter is easily checked in the computing algorithm 
without the expenditure of additional machine time. 

After we find the value of the load parameter for which the equilibrium state is un- 
stable, we seek the mode of loss of stability of the shell from the solution of the system 
H6 ~ 0. To do this, we determine one of the linearly dependent rows of the matrix H, for 
which the minor becomes negative. This line and the corresponding column of the matrix H 
take zero values. Unity is inserted for the diagonal element, while the column, multiplied 
by the assigned displacement, is moved to the right side. The algorithm was realized in 
an application package written for a BESM-6 computer and makes it possible to take a stan- 
dard approach toward the study of the stability of imperfect shells with different loads 
and boundary conditions. 

5. Example. We studied the stability of a flowed circular cylindrical shell hinged 
at its end and subjected to nonaxisymmetric externalpressure, changing by the law q = q0 (I~ 
cos ~). The shell had L = L/R = 2, R/h = i00, while the initial flaws w ~ = (wcos ~x/L) cos p% 

Figure 1 shows the dependence of the dimensionless parameter kq = q/qh on w* = w/h for 
p = 2, where q is the critical amplitude of the nonuniform pressure and qh is the higher 
uniform critical pressure [5]. The solid lines in this and other figures correspond to the 
solution obtained with a nonlinear initial stress-strain state. The dashed lines show the 
solution obtained with a linear initial state. It is evident that the value of k decreases q 
with an increase in the amplitude of the initial deflection for both the linear and nonlinear 
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initial stress-strain states. With an increase in w*, the effect of nonlinearity of the 
initial state increases and reaches 20% at w* = i. 

Figure 2 shows the dependence of kq on p, characterizing the change in the initial de- 
flection in the circumferential direction for w* = 0.4. The solutions obtained with linear 
and nonlinear initial stress-strain states qualitatively coincide, i.e., an increase in p 
is initially accompanied by a decrease in the parameter kq. The latter reaches a minimum 
at p = p* (p* is the wave-formation parameter with uniform external pressure). The param- 
eter kq then increases, and the greatest effect on nonlinearity is seen at p = p*. Here, 
the effect reaches 100%. 

Figures 3 and 4 show the mode of deformation of the shell in the initial state and the 
mode of loss of stability for p = 2 and w* = 0.4. It is evident that they do not coincide. 
The shell becomes unstable in its upper part, with the formation of six distinct longitudi- 
nal folds. In light of the planar symmetry of the shell and the load, we isolated one-fourth 
of the shell and subdivided it into n curvilinear rectangular finite elements of natural 
curvature in the longitudinal and transverse directions. 

Figure 5 shows the graph of the convergence of the solution (the determination of the 
critical load) according to the number of finite elements n. The satisfactory convergence 
of the solution is evident. The results of the calculation were compared with the solution 
obtained on a 16 x 16 grid. The algorithm developed here makes it possible to use a standard 
approach toward studing the stability of shells with longitudinal loads and initial deflections. 
Here, the mode of instability is not connected with the form of the initial deflections. 
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